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String DACs

Current Steering DACs
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DAC Performance Issues and Concerns

Ideal
Complete 

Linear Settling

Incomplete 

Linear Settling

Complete Nonlinear 

Settling

Incomplete 

Nonlinear Settling Complete with glitch Incomplete with 

glitch
Incomplete with big 

glitch

Review from Last Lecture



String 168

R-2R 79

Current Source 52

MDAC 23

Current Sink 17

SAR 9

Pipeline 7

Delta Sigma 4

1-Steering 3

Current Steering 2

What DAC Architectures are Actually Used?

Listing from Texas Instruments  March 1 2023 
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Switch Assignment
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Challenges:

n-channel region

p-channel region
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Switch Parasitics

G D
S
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CGB when off
CGC when onφ 
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CBS

CGSOL
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CGC when on

CGDOL

CBD

CWELLSSUB
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• CBD and CBS can be significant and cause rise-fall times to be position dependent

• CGDOL can cause “kickback” or feed-forward

• CGS can slow turn-on and turn-off time of switch

Review from Last Lecture



R-String DAC
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Capacitive loading due to switches
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R-String DAC

Challenges

• Still many signals to route

• Large capacitance on VOUT (over 2n+1

diff caps)

• Multiple previous code dependencies 

cause output transition time to be quite 

unpredictable

• Considerable transients introduced on 

R-string

b3 b3 b2 b2 b1 b1

R-String

VREF

XIN

n

Decoder

VOUT

Matrix Decoder

• Uses matrix decoder as analog 

MUX  (don’t synthesize decoder)

• Implements binary to decimal 

conversion with pass transistor 

analog logic

• Very structured layout

• Interconnection points are switches 
(combination of n-channel and p-channel)

Review from Last Lecture



R-String DAC 

Previous-Code Dependent Settling
• Assume all C’s (except those on the R-string)  were initially at 0V

• Red denotes V3, green denotes V6, black denotes 0V, Purple some other voltage

• Some capacitors may retain values from a previous input for many clock cycles 

for some inputs resulting I previous-previous dependence of even longer

Transition from <010>  to <101>

b3 b3 b2 b2 b1 b1

R-String

VREF

XIN

n

Decoder

VOUT

Tree Decoder

< 1 0 1 >

Example:

V3

V6

White boxes show capacitors dependent 

upon previous code <010>

Review from Last Lecture



R-String DAC 

Tree-Decoder in Digital Domain

b3 b3 b2 b2 b1 b1

Decoder

Tree Decoder

VDD
VOUT

Do the resistors  that form part of PTL dissipate any substantial power?

No because only one will be conducting for any DAC output

Single transistor used at each marked intersection  for PTL AND gates

Significant reduction in capacitive loading at output

Will become more complicated if both p-channel and n-channel switches needed

Review from Last Lecture



R-String DAC 
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R-String DAC 

Note Dual Ladder is used !
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R-String DAC 

Note Dual Ladder is used !

32x32 Matrix
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: AND pixel sensor gate



Cited by 51 (4/5/10)

Cited by 94 (4/6/14)

Cited by 109 (4/5/16)

Cited by 133 (3/8/21)

Cited by 136 (3/5/23)
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Common-Centroid Anti-Parallel Ladder Layout



Common-Centroid Anti-Parallel Ladder Layout
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R-String DAC 
String DAC with Row-Column Decoder

• Dramatic reduction in decoder 

complexity

• Dramatic reduction of capacitive 

loading on output

• Changes decoder from a one-

dimensional to a two-dimensional 

solution (can be thought of as  folding)

• Logic gates could be placed at each 

node to eliminate analog row decoder

Challenges (most were present in earlier structures too)

• Some previous code dependence

• INL large 

• Difficult to cancel gradient effects in layout

Switching sequencing can help a lot

• Switch impedances code dependent

• Settling times code dependent
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R-String vs R-Ladder 
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How do these structures compare?



R-String DAC 
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R-String DAC 
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Sometimes termed sub-divider, 

sub-range  or dual-string DAC

Fine String Interpolator



R-String DAC 

R

R

R

R

VRFF n1

XIN

S1

S2

S3

RF

SN2

VOUT

n2

n

1 2n = n :n

Sck

Sc(k-1)

Sc1

R

Sc2

Sc4

Sc3

ScN1

Sc(N1-1)

RF

RF

RF

RF

SN2-1

SN2+1

Buffered Fine String Interpolator



R-String DAC 
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2 2nN =

Paralleling each R will be either the 

interpolator or a resistor of value 

N2RF

Area of N2RF resistors may be very 

small

Tap voltages on coarse R-string should 

not change with XIN



R-String DAC 
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Current Sources have same 

dc current as interpolator



Basic R-String DAC 
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Basic R-String DAC 

• Another Segmented DAC structure

• Can be viewed as a “dither” DAC

• Often n1 is smaller than n2

• Dither can be used in other applications as well
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Basic R-String DAC 
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Impedance facing VOUT is code dependent

No loading of VREF

Kickback to VREF removed



• William Thomson, 1st Baron Kelvin (1824-1907)

• Cromwell Fleetwood Varley  (1828-1883)

Kelvin-Varley Divider

VREF

VOUT

(Artwork modified from Wikipedia)

➢ Shown as decimal divider (1 decimal digit per stage)

➢ 11 resistors in each string except last which has 10

Requires decoders to control switches but they are small



Kelvin-Varley Divider

➢ Shown as binary divider (1 bits/stage)

➢ 3 resistors in each string except last which has 2

Concept Can Be Extended to Any Base
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VOUT

No decoder needed to control switches 



Kelvin-Varley Divider

➢ Shown as binary divider (1 bits/stage)

➢ 3 resistors in each string except last which has 2

Concept Can Be Extended to Any Base

VREF

R

R

R

R

R

R

R

R

R

R

R

VOUT

Switch Impedance Degrades Performance (Much like R-2R) 

R

Can we make each resistor as a unary resistor-switch cell to compensate 

for switch impedance?



Kelvin-Varley Divider

➢ Shown as binary divider (1 bits/stage)

➢ 3 resistors in each string except last which has 2

➢ Can be extended to any number of stages

Concept Can Be Extended to Any Base
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G
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R
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E n
-1

All resistors of same value

Physical size of resistors need not be the same

No decoder needed to control switches 



Kelvin-Varley Divider

➢ Shown as binary divider (2 bits/stage)

➢ 5 resistors in each string except last which has 4

Concept Can Be Extended to Any Base

Small decoder needed to control switches 
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Kelvin-Varley Divider

➢ Shown as binary divider (n1 bits/stage)

➢ 2n1+1 resistors in each string except last which has 2n1

Concept Can Be Extended to Any Base
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Small decoder needed to control switches 

Switch impedance affects attenuation

Voltage on MSB nodes ideally do not change with code 



Kelvin-Varley Divider
Concept Can Be Extended to Any Base

Switch impedance compensation

j 1I =I for all i
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Kelvin-Varley Divider
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RRR
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Comparison of Kelvin-Varley and R-2R

Both have 3 Resistors  and 2 switches / slice

Are there any benefits of the KV structure relative to the R-2R structure?



Current Steering DACs



Current Steering DACs 

Concept n XOUT
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• Current sources usually unary or binary-bundled unary

• Termed bottom-plate switching

• Can eliminate resistors from DAC core

• Op Amp and resistor R can be external

• Can use all same type of switches

• Switch impedance not critical nor is switch matching

• Popular MDAC approach



Current Steering DACs 
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Inherently Insensitive to Nonlinearities in Switches and Resistors

• Termed “top plate switching”

• Thermometer coding (routing challenge!)

• Excellent DNL properties 

• INL may be poor, typically near mid range

• Switch kickback to VREF

• Not suitable for use as MDAC

Unary Current Sources
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Current Steering DACs  

– Inherently Insensitive to Nonlinearities in Switches and Resistors

– Smaller ON resistance and less phase-shift from clock edges

• Termed “bottom plate switching”

• Thermometer coded

• Can be used as MDAC

• Reduced kickback  to VREF

Unary Current Sources

R

S1

I1

R

S2

I2

R

SN-1

IN-1

VREF

RF

1
2

VOUTB
in

a
ry

 t
o

 T
h
e

rm
o
m

e
te

r 

D
e

c
o
d
e

r 
 (

a
ll 

O
N

)

n

XIN

IOUT



Current Steering DACs 

T-gate

R

S1

I1

VREF

RF

1
2

VOUT

B
in

a
ry

 t
o

 T
h

e
rm

o
m

e
te

r 

D
e

c
o

d
e

r 
 (

a
ll 

O
N

)
n

R

S2

I2

R

SN

IN-1

• All single-transistor n-channel devices for switcher

• Unary R:switch cells

• Parasitic capacitances on drain nodes of switches cause transient settling delays

• R+Rsw is nonlinear (so nonlinear relationship between Ik and VREF) but does not 

affect linearity of DAC

• Resistor and switch impedance matching important

• Previous code dependent transient (parasitic capacitances on drains of switches)



Stay Safe and Stay Healthy !



End of Lecture 14


